论文标题

对几次学习的全面调查:进化,应用,挑战和机遇

A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities

论文作者

Song, Yisheng, Wang, Ting, Mondal, Subrota K, Sahoo, Jyoti Prakash

论文摘要

几乎没有学习的学习(FSL)已成为一种有效的学习方法,并且显示出很大的潜力。尽管最近在解决FSL任务方面进行了创意工作,但仅几个甚至零样本中迅速学习有效的信息仍然是一个严重的挑战。在这种情况下,我们对过去三年发表的200多篇有关FSL的最新论文进行了广泛的研究,旨在及时,全面地概述FSL的最新进展,以及对现有作品的优势和缺点的公正比较。为了避免概念上的困惑,我们首先详细阐述并比较了一组类似的概念,包括几乎没有学习,转移学习和元学习。此外,我们提出了一种新颖的分类法,根据FSL的挑战,根据知识的抽象水平对现有工作进行分类。为了丰富这项调查,在每个小节中,我们提供有关这些主题最新进展的深入分析和有见地的讨论。此外,以计算机视觉为例,我们强调了FSL的重要应用,涵盖了各种研究热点。最后,我们以对技术演化趋势的独特见解以及潜在的未来研究机会结束了这项调查,以期为后续研究提供指导。

Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源