论文标题
Minkowski空间中的整个凸曲率流
Entire convex curvature flow in Minkowski space
论文作者
论文摘要
在本文中,我们研究了Minkowski空间中非相似超相似超曲面的完全非线性曲率流。我们证明,如果最初的hyperface满足某些条件,则该流量一直存在。此外,我们表明,在重新恢复流程后,将流动融合到未来的脉冲型双曲体中,这是一个自我繁殖。
In this paper, we study fully nonlinear curvature flows of noncompact spacelike hypersurfaces in Minkowski space. We prove that if the initial hypersurface satisfies certain conditions, then the flow exists for all time. Moreover, we show that after rescaling the flow converges to the future timelike hyperboloid, which is a self-expander.