论文标题
虚假新闻对动态异质信息网络的快速检测
Fake News Quick Detection on Dynamic Heterogeneous Information Networks
论文作者
论文摘要
近年来,假新闻的传播对社会造成了巨大伤害。因此,快速发现假新闻已成为一项重要任务。一些当前的检测方法通常将新闻文章和其他相关组件建模为静态的异质信息网络(HIN),并使用昂贵的消息传递算法。但是,在现实世界中,快速识别假新闻具有重要意义,并且网络随着动态节点和边缘而言可能会有所不同。因此,在本文中,我们提出了一种新型动态异质图神经网络(DHGNN),以进行假新闻快速检测。更具体地说,我们首先实现了Bert和微调的Bert,以获取新闻文章内容和作者配置文件的语义表示,然后将其转换为图形数据。然后,我们构建了异构新闻作者图,以反映上下文信息和关系。此外,我们将个性化的Pagerank繁殖和动态传播的想法转化为异质网络,以减少培训期间通过许多节点进行反向传播的时间复杂性。在三个现实世界中的虚假新闻数据集上的实验表明,就有效性和效率而言,DHGNN可以优于其他基于GNN的模型。
The spread of fake news has caused great harm to society in recent years. So the quick detection of fake news has become an important task. Some current detection methods often model news articles and other related components as a static heterogeneous information network (HIN) and use expensive message-passing algorithms. However, in the real-world, quickly identifying fake news is of great significance and the network may vary over time in terms of dynamic nodes and edges. Therefore, in this paper, we propose a novel Dynamic Heterogeneous Graph Neural Network (DHGNN) for fake news quick detection. More specifically, we first implement BERT and fine-tuned BERT to get a semantic representation of the news article contents and author profiles and convert it into graph data. Then, we construct the heterogeneous news-author graph to reflect contextual information and relationships. Additionally, we adapt ideas from personalized PageRank propagation and dynamic propagation to heterogeneous networks in order to reduce the time complexity of back-propagating through many nodes during training. Experiments on three real-world fake news datasets show that DHGNN can outperform other GNN-based models in terms of both effectiveness and efficiency.