论文标题
多维BOHR半径的渐近值
Asymptotic value of the multidimensional Bohr radius
论文作者
论文摘要
本文确定了BOHR RADII的确切渐近值和在$ \ ell_p^n $空间的单位球上定义的全体形函数的算术BOHR RADII,并在$ \ m athbb {c} $的简单连接域中具有值。此外,我们研究了四种不同类别的全体形态功能的尖锐的Bohr半径。这些功能将复杂的Banach Space $ X $的有限平衡域$ G $映射到以下域:右半平面,缝隙域,刺穿的单元磁盘和封闭式单元磁盘的外部。
This article determines the exact asymptotic value of the Bohr radii and the arithmetic Bohr radii for the holomorphic functions defined on the unit ball of the $\ell_p^n$ space and having values in the simply connected domain of $\mathbb{C}$. Moreover, we investigate sharp Bohr radius for four distinct categories of holomorphic functions. These functions map the bounded balanced domain $G$ of a complex Banach space $X$ into the following domains: the right half-plane, the slit domain, the punctured unit disk, and the exterior of the closed unit disk.