论文标题

Franke Comodule类别中的可逆对象

Invertible objects in Franke's comodule categories

论文作者

Heard, Drew

论文摘要

我们研究了Franke的Picard Group of Quasi-Periodic $ e_0e $ -odules for $ e $ e $ a $ a a $ a 2-磨牙的陆地韦伯精确的高度同居理论$ n $,例如Morava $ e $ - $ e $ - 理论,显示为$ 2pp-2> n^2+n $ $ 2p-n^2+n $,该集团是无限的sissitions sissementions sissive sissionsion suistesions sissition subsitions nim nut nut nut。这类似于但与Hovey和Sadofsky在$ e $ $ - 本地稳定同型类别中的相应计算相似。我们还会对PICARD组进行计算$ i_n $ - complete quasi-periodic $ e_0e $ - 编码时,当$ e $是Morava $ e $ - 理论时,由Barthel-schlank-- stapleton研究,以$ 2p-2 pp-2 \ ge n^2 $和$ p-1 $ p-1 \ nmid n $,和$ k.同型类别,表明他们同意扩展。

We study the Picard group of Franke's category of quasi-periodic $E_0E$-comodules for $E$ a 2-periodic Landweber exact cohomology theory of height $n$ such as Morava $E$-theory, showing that for $2p-2 > n^2+n$, this group is infinite cyclic, generated by the suspension of the unit. This is analogous to, but independent of, the corresponding calculations by Hovey and Sadofsky in the $E$-local stable homotopy category. We also give a computation of the Picard group of $I_n$-complete quasi-periodic $E_0E$-comodules when $E$ is Morava $E$-theory, as studied by Barthel--Schlank--Stapleton for $2p-2 \ge n^2$ and $p-1 \nmid n$, and compare this to the Picard group of the $K(n)$-local stable homotopy category, showing that they agree up to extension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源