论文标题

在乘法随机效用最大化下,最大捕获设施位置的联合位置和成本计划

Joint Location and Cost Planning in Maximum Capture Facility Location under Multiplicative Random Utility Maximization

论文作者

Duong, Ngan Ha, Dam, Tien Thanh, Ta, Thuy Anh, Mai, Tien

论文摘要

我们在随机效用最大化(RUM)模型下研究竞争市场中的联合设施位置和成本计划问题。目的是找到新的设施,并根据朗姆酒模型在所有可用的设施中选择一个设施,以最大程度地提高预期捕获的客户需求,以最大限度地提高预期的客户需求,并根据所有可用的设施在所有可用的设施中选择一个新设施的成本(或预算)做出决定。我们检查了离散选择文献中的两个朗姆酒框架,即添加剂和乘法朗姆酒。尽管前者已被广泛用于设施位置问题,但我们是第一个在上下文中探索后者的人。我们从数字上表明,在成本优化问题的背景下,两个朗姆酒框架可以互相近似。此外,我们表明,在添加朗姆酒框架下,最终的成本优化问题变得高度非凸,并且可能具有多个局部优点。相比之下,使用乘法朗姆酒为竞争性设施的位置问题带来了一些优势。例如,可以通过一般凸优化求解器有效地解决乘法朗姆酒下的成本优化问题,也可以作为圆锥二次程序进行重新纠正,并由诸如CPELX或GUOLOBI等现成的求解器中的圆锥求解器处理。此外,我们考虑了多种朗姆酒中的共同位置和成本优化问题,并提出了三种解决该问题的方法,即等效的圆锥重新印象,多切开的外部外观示威算法和本地搜索启发式。我们根据各种大小的合成实例提供数值实验,以评估提出的算法在解决成本优化方面的性能以及联合位置和成本优化问题。

We study a joint facility location and cost planning problem in a competitive market under random utility maximization (RUM) models. The objective is to locate new facilities and make decisions on the costs (or budgets) to spend on the new facilities, aiming to maximize an expected captured customer demand, assuming that customers choose a facility among all available facilities according to a RUM model. We examine two RUM frameworks in the discrete choice literature, namely, the additive and multiplicative RUM. While the former has been widely used in facility location problems, we are the first to explore the latter in the context. We numerically show that the two RUM frameworks can well approximate each other in the context of the cost optimization problem. In addition, we show that, under the additive RUM framework, the resultant cost optimization problem becomes highly non-convex and may have several local optima. In contrast, the use of the multiplicative RUM brings several advantages to the competitive facility location problem. For instance, the cost optimization problem under the multiplicative RUM can be solved efficiently by a general convex optimization solver or can be reformulated as a conic quadratic program and handled by a conic solver available in some off-the-shelf solvers such as CPLEX or GUROBI. Furthermore, we consider a joint location and cost optimization problem under the multiplicative RUM and propose three approaches to solve the problem, namely, an equivalent conic reformulation, a multi-cut outer-approximation algorithm, and a local search heuristic. We provide numerical experiments based on synthetic instances of various sizes to evaluate the performances of the proposed algorithms in solving the cost optimization, and the joint location and cost optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源