论文标题
第一原理中二维材料中点缺陷的自旋相干时间
Spin coherence times of point defects in two-dimensional materials from first principles
论文作者
论文摘要
使用群集相关扩展(CCE)方法计算出45个不同2D宿主材料中69个三重态缺陷中心的自旋相干时间,该方法具有从密度功能理论(DFT)获得的自旋汉密尔顿的参数。发现其中几个三胞胎表现出非常大的自旋相干时间,使其在量子信息处理中有趣。自旋相干时间对各种因素的依赖性,包括高精细偶联强度,偶极 - 偶极偶联和核G因子。分析表明,自旋相干时间对缺陷中心的原子细节不敏感,而是由宿主材料的核自旋特性所决定的。然后,使用符号回归来得出一个简单的旋转相干时间表达式,该表达式是在回归模型未见的55个双重缺陷的测试集上验证的。简单的表达允许旋转连贯时间的量顺序估计,而无需昂贵的第一原理计算。
The spin coherence times of 69 triplet defect centers in 45 different 2D host materials are calculated using the cluster correlation expansion (CCE) method with parameters of the spin Hamiltonian obtained from density functional theory (DFT). Several of the triplets are found to exhibit extraordinarily large spin coherence times making them interesting for quantum information processing. The dependence of the spin coherence time on various factors, including the hyperfine coupling strength, the dipole-dipole coupling, and the nuclear g-factors, are systematically investigated. The analysis shows that the spin coherence time is insensitive to the atomistic details of the defect center and rather is dictated by the nuclear spin properties of the host material. Symbolic regression is then used to derive a simple expression for spin coherence time, which is validated on a test set of 55 doublet defects unseen by the regression model. The simple expression permits order-of-magnitude estimates of the spin coherence time without expensive first principles calculations.