论文标题

二维纳米流体通道中的长期记忆和突触样动力学

Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels

论文作者

Robin, P., Emmerich, T., Ismail, A., Niguès, A., You, Y., Nam, G. -H., Keerthi, A., Siria, A., Geim, A. K., Radha, B., Bocquet, L.

论文摘要

跨纳米级孔的微调离子运输是许多生物学过程(例如神经传递)的关键。最近的进步使水和离子能够将水和离子限制在两个维度上,揭示了在较大尺度上无法达到的运输特性,并触发了希望再现生物系统离子机械的希望。在这里,我们报告的实验证明了在(子)纳米级通道中水溶液传输中记忆的出现。根据通道的材料和限制,我们揭开了两种类型的纳米流体回忆录,记忆力为几分钟到几个小时。我们解释了从离子自组装或表面吸附等界面过程中出现大的时间尺度。这种行为使我们能够通过纳米流体系统实施HEBBIAN学习。该结果为水解芯片上的仿生计算奠定了基础。

Fine-tuned ion transport across nanoscale pores is key to many biological processes such as neurotransmission. Recent advances have enabled the confinement of water and ions to two dimensions, unveiling transport properties unreachable at larger scales and triggering hopes to reproduce the ionic machinery of biological systems. Here we report experiments demonstrating the emergence of memory in the transport of aqueous electrolytes across (sub)nanoscale channels. We unveiled two types of nanofluidic memristors, depending on channel material and confinement, with memory from minutes to hours. We explained how large timescales could emerge from interfacial processes like ionic self-assembly or surface adsorption. Such behavior allowed us to implement Hebbian learning with nanofluidic systems. This result lays the ground for biomimetic computations on aqueous electrolytic chips.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源