论文标题
使用可解释的机器学习的害虫存在预测
Pest presence prediction using interpretable machine learning
论文作者
论文摘要
Helicoverpa Armigera或棉花毛虫是一种严重的棉花作物害虫,威胁着棉绒的产量和质量。及时了解昆虫在该领域的存在对于有效的农场干预至关重要。元素气候和植被状况已被确定为作物丰度的关键驱动因素。在这项工作中,我们应用了一个可解释的分类器,即可解释的提升机,它使用地球观察植被指数,数值天气预测和昆虫陷阱捕获量来预测希腊棉花场中棉布虫的危害。我们方法的玻璃箱性质为模型的主要驱动因素及其之间的相互作用提供了重要的见解。模型可解释性增加了我们方法的可信赖性,因此在运营农场管理方案中的快速吸收和基于上下文的实施的潜力。我们的结果令人满意,通过我们对全球和局部解释性的分析,驱动因素的重要性与文献一致。
Helicoverpa Armigera, or cotton bollworm, is a serious insect pest of cotton crops that threatens the yield and the quality of lint. The timely knowledge of the presence of the insects in the field is crucial for effective farm interventions. Meteo-climatic and vegetation conditions have been identified as key drivers of crop pest abundance. In this work, we applied an interpretable classifier, i.e., Explainable Boosting Machine, which uses earth observation vegetation indices, numerical weather predictions and insect trap catches to predict the onset of bollworm harmfulness in cotton fields in Greece. The glass-box nature of our approach provides significant insight on the main drivers of the model and the interactions among them. Model interpretability adds to the trustworthiness of our approach and therefore its potential for rapid uptake and context-based implementation in operational farm management scenarios. Our results are satisfactory and the importance of drivers, through our analysis on global and local explainability, is in accordance with the literature.