论文标题

Curfi:一种使用曲线拟合找到最佳回归分析模型的自动化工具

CurFi: An automated tool to find the best regression analysis model using curve fitting

论文作者

Roy, Ayon, Zubayer, Tausif Al, Tabassum, Nafisa, Islam, Muhammad Nazrul, Sattar, Md. Abdus

论文摘要

回归分析是一种众所周知的定量研究方法,主要探讨一个或多个自变量和因变量之间的关系。在具有多个独立变量的大型数据集上手动进行回归分析可能很乏味。用于回归分析的自动化系统将对研究人员以及非专家用户有很大帮助。因此,这项研究的目的是设计和开发自动化曲线拟合系统。作为结果,开发了一个名为“ Curfi”的曲线拟合系统,该系统使用线性回归模型将曲线拟合到数据集并找出最佳拟合模型。该系统促进上载数据集,将数据集拆分为训练集和测试集,从数据集中选择相关功能并标记;训练完成后,系统将返回最佳拟合线性回归模型。对于拥有有限的技术知识的用户来说,开发的工具将是一个很好的资源,他们还可以使用开发的“ Curfi”系统找到数据集的最佳拟合回归模型。

Regression analysis is a well known quantitative research method that primarily explores the relationship between one or more independent variables and a dependent variable. Conducting regression analysis manually on large datasets with multiple independent variables can be tedious. An automated system for regression analysis will be of great help for researchers as well as non-expert users. Thus, the objective of this research is to design and develop an automated curve fitting system. As outcome, a curve fitting system named "CurFi" was developed that uses linear regression models to fit a curve to a dataset and to find out the best fit model. The system facilitates to upload a dataset, split the dataset into training set and test set, select relevant features and label from the dataset; and the system will return the best fit linear regression model after training is completed. The developed tool would be a great resource for the users having limited technical knowledge who will also be able to find the best fit regression model for a dataset using the developed "CurFi" system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源