论文标题

Remus-gnn:用于模拟连续动力学的旋转率模型

REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum Dynamics

论文作者

Lino, Mario, Fotiadis, Stati, Bharath, Anil A., Cantwell, Chris

论文摘要

数值模拟是科学和工程许多领域的重要工具,但其性能通常会限制实践中的应用或用于探索大型参数空间的应用。另一方面,替代深度学习模型在加速模拟的同时,通常表现出较差的准确性和概括能力。为了改善这两个因素,我们介绍了Remus-GNN,Remus-gnn是一种旋转等值的多尺度模型,用于模拟连续性动态系统,其中包含一系列长度尺度的范围。 Remus-gnn旨在从离散到非结构化节点集的物理域上的输入向量字段预测输出向量字段。与域的旋转旋转是一种理想的电感偏差,它使网络可以更有效地学习潜在的物理学,从而提高了与缺乏这种对称性的类似体系结构相比,可以提高准确性和概括。我们在椭圆圆柱周围不可压缩的流程上演示和评估了这种方法。

Numerical simulation is an essential tool in many areas of science and engineering, but its performance often limits application in practice or when used to explore large parameter spaces. On the other hand, surrogate deep learning models, while accelerating simulations, often exhibit poor accuracy and ability to generalise. In order to improve these two factors, we introduce REMuS-GNN, a rotation-equivariant multi-scale model for simulating continuum dynamical systems encompassing a range of length scales. REMuS-GNN is designed to predict an output vector field from an input vector field on a physical domain discretised into an unstructured set of nodes. Equivariance to rotations of the domain is a desirable inductive bias that allows the network to learn the underlying physics more efficiently, leading to improved accuracy and generalisation compared with similar architectures that lack such symmetry. We demonstrate and evaluate this method on the incompressible flow around elliptical cylinders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源