论文标题
使用机器学习预测肾脏移植患者的克莫司
Predicting tacrolimus exposure in kidney transplanted patients using machine learning
论文作者
论文摘要
他克莫司是在固体器官移植后在全球大多数移植中心中的基石免疫抑制药物之一。为了避免拒绝移植的器官或严重的副作用,需要对他克莫司的治疗药物监测。但是,即使对于经验丰富的临床医生来说,为给定患者找到正确的剂量也很具有挑战性。因此,可以准确估计单个剂量适应药物暴露的工具将具有很高的临床价值。在这项工作中,我们提出了一种使用机器学习的新技术,以估计肾脏移植受者中的他克莫司的暴露。我们的模型达到的预测误差与已建立的人群药代动力学模型的水平相同,但发展速度更快,需要更少有关该药物的药代动力学特性的知识。
Tacrolimus is one of the cornerstone immunosuppressive drugs in most transplantation centers worldwide following solid organ transplantation. Therapeutic drug monitoring of tacrolimus is necessary in order to avoid rejection of the transplanted organ or severe side effects. However, finding the right dose for a given patient is challenging, even for experienced clinicians. Consequently, a tool that can accurately estimate the drug exposure for individual dose adaptions would be of high clinical value. In this work, we propose a new technique using machine learning to estimate the tacrolimus exposure in kidney transplant recipients. Our models achieve predictive errors that are at the same level as an established population pharmacokinetic model, but are faster to develop and require less knowledge about the pharmacokinetic properties of the drug.