论文标题

$ 2 $ - 距离,注入和精确的正方形列表色,具有最高度4的平面图

$2$-distance, injective, and exact square list-coloring of planar graphs with maximum degree 4

论文作者

La, Hoang, Štorgel, Kenny

论文摘要

在过去的各种基于平面图的基于距离的着色。我们将重点转移到其中的三个,即$ 2 $持续着色,注入性着色和精确的正方形着色。 $ 2 $持续的颜色是顶点的适当着色,在该顶点中,$ 2 $的两个顶点$ 2 $都会获得相同的颜色,注入性的着色是顶点的着色,在该顶点中,没有两个带有共同邻居的顶点的顶点获得相同的颜色,并且精确的正方形是在距离上的两种颜色的颜色,距离$ 2 $ $ 2 $ $ 2 $。我们证明,具有最高度的平面图$δ= 4 $,至少$ 4 $是$ 2 $ distance List $(δ+ 7)$ - 可颜色和浸润性清单$(δ+ 5)$ - 可着色。此外,我们证明具有$δ= 4 $的平面图是榜首$(δ+ 7)$ - 可着色和精确的正方形列表$(δ+ 6)$ - 可着色。

In the past various distance based colorings on planar graphs were introduced. We turn our focus to three of them, namely $2$-distance coloring, injective coloring, and exact square coloring. A $2$-distance coloring is a proper coloring of the vertices in which no two vertices at distance $2$ receive the same color, an injective coloring is a coloring of the vertices in which no two vertices with a common neighbor receive the same color, and an exact square coloring is a coloring of the vertices in which no two vertices at distance exactly $2$ receive the same color. We prove that planar graphs with maximum degree $Δ= 4$ and girth at least $4$ are $2$-distance list $(Δ+ 7)$-colorable and injectively list $(Δ+ 5)$-colorable. Additionally, we prove that planar graphs with $Δ= 4$ are injectively list $(Δ+ 7)$-colorable and exact square list $(Δ+ 6)$-colorable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源