论文标题

部分可观测时空混沌系统的无模型预测

Lost in Compression: the Impact of Lossy Image Compression on Variable Size Object Detection within Infrared Imagery

论文作者

Bhowmik, Neelanjan, Barker, Jack W., Gaus, Yona Falinie A., Breckon, Toby P.

论文摘要

有损的图像压缩策略可以通过将数据编码为简化形式来更有效地存储和传输数据。这是对较大的配备较低存储环境的较大数据集的必不可少的培训。但是,即使应用轻度压缩,这种压缩也可能导致深卷卷神经网络(CNN)体系结构的性能严重下降,并且所得的压缩图像在视觉上相同。在这项工作中,我们将有损耗的JPEG压缩方法应用于六个离散水平的压缩水平{95、75、50、50、15、10、5}将红外频带(热)图像应用于。我们的研究定量评估了损失压缩水平的增加对与数据集中存在的不同物体相对于不同大小的对象的特征性多样化对象检测体系结构的性能。当训练和评估未压缩的数据作为基线时,我们在Flir数据集中使用级联R-CNN达到最大平均平均精度(MAP)为0.823,表现优于先前的工作。在所有三个CNN体系结构中,在较高的压缩水平(15、10、5)下,有损压缩的影响更为极端。然而,对有损耗的压缩成像的重新训练模型特别是对所有三种CNN模型的表现,平均增量为〜76%(在较高的压缩水平5下)。此外,我们证明了相对于压缩水平,不同物体区域{微小,小,中,大}的相对灵敏度。我们表明,与中和大物体相比,微小和小物体对压缩更敏感。总体而言,级联R-CNN在大多数对象区域类别中都达到了最大图。

Lossy image compression strategies allow for more efficient storage and transmission of data by encoding data to a reduced form. This is essential enable training with larger datasets on less storage-equipped environments. However, such compression can cause severe decline in performance of deep Convolution Neural Network (CNN) architectures even when mild compression is applied and the resulting compressed imagery is visually identical. In this work, we apply the lossy JPEG compression method with six discrete levels of increasing compression {95, 75, 50, 15, 10, 5} to infrared band (thermal) imagery. Our study quantitatively evaluates the affect that increasing levels of lossy compression has upon the performance of characteristically diverse object detection architectures (Cascade-RCNN, FSAF and Deformable DETR) with respect to varying sizes of objects present in the dataset. When training and evaluating on uncompressed data as a baseline, we achieve maximal mean Average Precision (mAP) of 0.823 with Cascade R-CNN across the FLIR dataset, outperforming prior work. The impact of the lossy compression is more extreme at higher compression levels (15, 10, 5) across all three CNN architectures. However, re-training models on lossy compressed imagery notably ameliorated performances for all three CNN models with an average increment of ~76% (at higher compression level 5). Additionally, we demonstrate the relative sensitivity of differing object areas {tiny, small, medium, large} with respect to the compression level. We show that tiny and small objects are more sensitive to compression than medium and large objects. Overall, Cascade R-CNN attains the maximal mAP across most of the object area categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源