论文标题

在平均场神经网络中具有无限爆炸的全球解决方案

Global solutions with infinitely many blowups in a mean-field neural network

论文作者

Sadun, Lorenzo, Taillefumier, Thibaud

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We recently introduced idealized mean-field models for networks of integrate-and-fire neurons with impulse-like interactions -- the so-called delayed Poissonian mean-field models. Such models are prone to blowups: for a strong enough interaction coupling, the mean-field rate of interaction diverges in finite time with a finite fraction of neurons spiking simultaneously. Due to the reset mechanism of integrate-and-fire neurons, these blowups can happen repeatedly, at least in principle. A benefit of considering Poissonian mean-field models is that one can resolve blowups analytically by mapping the original singular dynamics onto uniformly regular dynamics via a time change. Resolving a blowup then amounts to solving the fixed-point problem that implicitly defines the time change, which can be done consistently for a single blowup and for nonzero delays. Here we extend this time-change analysis in two ways: First, we exhibit the existence and uniqueness of explosive solutions with a countable infinity of blowups in the large interaction regime. Second, we show that these delayed solutions specify "physical" explosive solutions in the limit of vanishing delays, which in turn can be explicitly constructed. The first result relies on the fact that blowups are self-sustaining but nonoverlapping in the time-changed picture. The second result follows from the continuity of blowups in the time-changed picture and incidentally implies the existence of periodic solutions. These results are useful to study the emergence of synchrony in neural network models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源