论文标题
计算机断层扫描肺血管造影图像模拟使用周期生成的对抗网络,来自肺栓塞患者的胸部CT成像
Computerized Tomography Pulmonary Angiography Image Simulation using Cycle Generative Adversarial Network from Chest CT imaging in Pulmonary Embolism Patients
论文作者
论文摘要
这项研究的目的是开发一种系统,该系统在临床上生成模拟的计算机断层扫描肺血管造影(CTPA)图像以进行肺栓塞诊断。如今,CTPA图像是确定和确定肺栓塞(PE)症状的黄金标准计算机检测方法,尽管执行CTPA对患者有害并且也很昂贵。因此,我们旨在通过CT图像检测可能的PE患者。该系统将使用深度学习模型模拟CTPA图像,以鉴定PE患者的症状,从而为医生提供另一项用于确定PE患者的参考。在这项研究中,模拟的CTPA图像生成系统使用生成拮抗网络来增强CT图像中肺部血管的特征,以增强图像的参考值,并为医院判断PE患者的基础。我们使用了来自国家郑大学国家医院的22例患者的CT图像和相应的CTPA图像作为模拟CTPA图像的任务的培训数据,并使用两组生成的对策网络生成它们。预计这项研究将提出一种新的方法来诊断肺部栓塞的临床诊断,其中使用深度学习网络来帮助进行复杂的筛查过程,并审查生成的模拟CTPA图像,从而使医生可以评估患者是否需要对CTPA进行详细的测试,以改善肺栓塞的速度和重新锻炼的肺增强速度的速度。
The purpose of this research is to develop a system that generates simulated computed tomography pulmonary angiography (CTPA) images clinically for pulmonary embolism diagnoses. Nowadays, CTPA images are the gold standard computerized detection method to determine and identify the symptoms of pulmonary embolism (PE), although performing CTPA is harmful for patients and also expensive. Therefore, we aim to detect possible PE patients through CT images. The system will simulate CTPA images with deep learning models for the identification of PE patients' symptoms, providing physicians with another reference for determining PE patients. In this study, the simulated CTPA image generation system uses a generative antagonistic network to enhance the features of pulmonary vessels in the CT images to strengthen the reference value of the images and provide a basis for hospitals to judge PE patients. We used the CT images of 22 patients from National Cheng Kung University Hospital and the corresponding CTPA images as the training data for the task of simulating CTPA images and generated them using two sets of generative countermeasure networks. This study is expected to propose a new approach to the clinical diagnosis of pulmonary embolism, in which a deep learning network is used to assist in the complex screening process and to review the generated simulated CTPA images, allowing physicians to assess whether a patient needs to undergo detailed testing for CTPA, improving the speed of detection of pulmonary embolism and significantly reducing the number of undetected patients.