论文标题
连接的代数组的逆Galois问题
The inverse Galois problem for connected algebraic groups
论文作者
论文摘要
我们表明,在任意地面场上,有限类型的每个连接组方案都是某些投影性,几何积分方案的自动形态组方案中身份的组成部分的同构。主要成分是嵌入到平滑的组方案,模棱两可的完成,轨道闭合的爆炸,为Kähler差异的理想和Blanchard的引理中的理想。
We show that each connected group scheme of finite type over an arbitrary ground field is isomorphic to the component of the identity inside the automorphism group scheme of some projective, geometrically integral scheme. The main ingredients are embeddings into smooth group schemes, equivariant completions, blow-ups of orbit closures, Fitting ideals for Kähler differentials, and Blanchard's Lemma.