论文标题
学习使用混合数据消除现实世界中GPR图像中的混乱
Learning to Remove Clutter in Real-World GPR Images Using Hybrid Data
论文作者
论文摘要
地面雷达雷达(GPR)雷达中的混乱会伪装或扭曲地下目标响应,这严重影响了目标检测和识别的准确性。现有的杂波去除方法在面对现实世界中的复合物和不规则杂波时会留下残余的杂物或变形的目标响应。为了应对实际场景中的混乱中去除杂物的挑战,在本研究中提出了在大规模混合数据集中训练的混乱神经网络(CR-NET)。 CR-NET将残留的密集块整合到U-NET结构中,以增强其在杂物抑制和目标反射恢复方面的能力。平均绝对误差(MAE)损失与多尺度结构相似性(MS-SSIM)损耗的组合用于有效地驱动网络的优化。为了训练拟议的CR-NET以删除现实世界中的复杂而多样的混乱,这是第一个名为CLT-GPR数据集的大规模混合数据集,其中包含不同GPR系统在多种方案中收集的混乱数据集。 CLT-GPR数据集可显着提高网络在现实世界GPR雷达中删除混乱的普遍性。广泛的实验结果表明,CR-NET在消除混乱和恢复各种现实世界情景中的目标响应方面取得了优于现有方法。此外,具有其端到端设计的CR-NET不需要手动参数调整,因此非常适合在GPR应用中自动生产无杂波的雷达法。可以在https://haihan-sun.github.io/gpr.html上找到CLT-GPR数据集和论文中实现的代码。
The clutter in the ground-penetrating radar (GPR) radargram disguises or distorts subsurface target responses, which severely affects the accuracy of target detection and identification. Existing clutter removal methods either leave residual clutter or deform target responses when facing complex and irregular clutter in the real-world radargram. To tackle the challenge of clutter removal in real scenarios, a clutter-removal neural network (CR-Net) trained on a large-scale hybrid dataset is presented in this study. The CR-Net integrates residual dense blocks into the U-Net architecture to enhance its capability in clutter suppression and target reflection restoration. The combination of the mean absolute error (MAE) loss and the multi-scale structural similarity (MS-SSIM) loss is used to effectively drive the optimization of the network. To train the proposed CR-Net to remove complex and diverse clutter in real-world radargrams, the first large-scale hybrid dataset named CLT-GPR dataset containing clutter collected by different GPR systems in multiple scenarios is built. The CLT-GPR dataset significantly improves the generalizability of the network to remove clutter in real-world GPR radargrams. Extensive experimental results demonstrate that the CR-Net achieves superior performance over existing methods in removing clutter and restoring target responses in diverse real-world scenarios. Moreover, the CR-Net with its end-to-end design does not require manual parameter tuning, making it highly suitable for automatically producing clutter-free radargrams in GPR applications. The CLT-GPR dataset and the code implemented in the paper can be found at https://haihan-sun.github.io/GPR.html.