论文标题
使用深度学习的臂神经躯干分割:与医生手动分割的比较研究
Brachial Plexus Nerve Trunk Segmentation Using Deep Learning: A Comparative Study with Doctors' Manual Segmentation
论文作者
论文摘要
超声引导的神经阻滞麻醉(UGNB)是一种高科技视觉神经阻滞麻醉方法,可以观察到靶神经及其周围结构,穿刺针的进步,局部麻醉剂实时扩散。 UGNB中的关键是神经识别。在深度学习方法的帮助下,可以实现自动识别或分割神经,从而有助于医生准确有效地完成神经阻滞麻醉。在这里,我们建立了一个公共数据集,其中包含320个臂丛超声图像(BP)。三名经验丰富的医生共同产生了BP分割的地面真相,并标记了臂丛神经。我们设计了基于深度学习的臂丛分割系统(BPSEGSYS)。 BPSEGSY在各种实验中都达到了经验丰富的神经级识别性能。我们在分割实验的常用性能度量方面评估了BPSEGSYS的性能(IOU)。考虑到我们已建立的公共数据集中的三个数据集组,BPSEGSYS的IOU分别为0.5238、0.4715和0.5029,超过了经验丰富的医生的IOU 0.5205、0.4704和0.4979。此外,我们表明BPSEGSYS可以帮助医生更准确地识别臂丛神经,并提高高达27%,具有显着的临床应用值。
Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can observe the target nerve and its surrounding structures, the puncture needle's advancement, and local anesthetics spread in real-time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. Here, we establish a public dataset containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produce the BP segmentation ground truth and label brachial plexus trunks. We design a brachial plexus segmentation system (BPSegSys) based on deep learning. BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluate BPSegSys' performance in terms of intersection-over-union (IoU), a commonly used performance measure for segmentation experiments. Considering three dataset groups in our established public dataset, the IoU of BPSegSys are 0.5238, 0.4715, and 0.5029, respectively, which exceed the IoU 0.5205, 0.4704, and 0.4979 of experienced doctors. In addition, we show that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value.