论文标题
深度学习密度功能,用于梯度下降优化
Deep learning density functionals for gradient descent optimization
论文作者
论文摘要
机器学习的回归模型代表了一种有前途的工具,可以通过密度功能理论实现准确和计算负担得起的能量密度功能来解决量子多体问题。但是,尽管可以轻松地训练它们以准确地将地面密度曲线映射到相应的能量,但它们的功能衍生物通常会变得太嘈杂,从而导致自一致的迭代和基于梯度的基于地面密度概况的搜索。我们研究了当将标准的深神经网络用作回归模型时,这些不稳定性是如何发生的,我们展示了如何使用具有通道间平均层的临时卷积体系结构来避免它。我们认为的测试床是光学斑点疾病中非相互作用原子的现实模型。借助渠道间的平均值,准确和系统地改进的地面能量和密度曲线是通过梯度降低的优化获得的,而没有不稳定性也不违反变异原理。
Machine-learned regression models represent a promising tool to implement accurate and computationally affordable energy-density functionals to solve quantum many-body problems via density functional theory. However, while they can easily be trained to accurately map ground-state density profiles to the corresponding energies, their functional derivatives often turn out to be too noisy, leading to instabilities in self-consistent iterations and in gradient-based searches of the ground-state density profile. We investigate how these instabilities occur when standard deep neural networks are adopted as regression models, and we show how to avoid it using an ad-hoc convolutional architecture featuring an inter-channel averaging layer. The testbed we consider is a realistic model for noninteracting atoms in optical speckle disorder. With the inter-channel average, accurate and systematically improvable ground-state energies and density profiles are obtained via gradient-descent optimization, without instabilities nor violations of the variational principle.