论文标题

重新恢复有限化学势状态的晶格QCD泰勒序列方程的新方法

New Way to Resum the Lattice QCD Taylor Series Equation of State at Finite Chemical Potential

论文作者

Mitra, Sabarnya, Hegde, Prasad, Schmidt, Christian

论文摘要

泰勒(BARYO)化学势$μ_b$的热力学潜力的泰勒扩展是绕过晶格QCD的符号问题的众所周知的方法。由于难以计算高阶泰勒系数,已经提出了各种替代扩展方案以及重新召集技术将泰勒级数扩展到较大的$μ_b$。最近,在Phys中提出了一种恢复第一个$ n $电荷密度相关功能$ d_1,\ dots,d_n $对Taylor系列对$μ_b$中所有订单的贡献。莱特牧师。 128,2,022001(2022)。重新召集采用指数因素的形式。由于相关函数是按随机计算的,因此指数因子包含一个偏差,对于大$ n $和$μ_b$可能很重要。在本文中,我们提出了一种根据统计数据众所周知的累积扩展来计算状态QCD方程的新方法。通过以最大订单$ m $截断扩展,我们最终只获得了相关函数的有限产品,这些产品可以以公正的方式进行评估。尽管我们的形式主义也适用于$μ_b\ ne0 $,但在这里我们以更简单的isospin化学势$μ_i$为其呈现,而没有符号问题。我们介绍并比较了使用泰勒膨胀,指数重新调整和累积膨胀获得的压力和同胞密度的结果,并提供了证据,表明后者缺乏偏差实际上可以改善收敛性。

Taylor expansion of the thermodynamic potential in powers of the (baryo)chemical potential $μ_B$ is a well-known method to bypass the Sign Problem of Lattice QCD. Due to the difficulty in calculating the higher order Taylor coefficients, various alternative expansion schemes as well as resummation techniques have been suggested to extend the Taylor series to larger values of $μ_B$. Recently, a way to resum the contribution of the first $N$ charge density correlation functions $D_1,\dots,D_N$ to the Taylor series to all orders in $μ_B$ was proposed in Phys. Rev. Lett. 128, 2, 022001 (2022). The resummation takes the form of an exponential factor. Since the correlation functions are calculated stochastically, the exponential factor contains a bias which can be significant for large $N$ and $μ_B$. In this paper, we present a new method to calculate the QCD equation of state based on the well-known cumulant expansion from statistics. By truncating the expansion at a maximum order $M$, we end up with only finite products of the correlation functions which can be evaluated in an unbiased manner. Although our formalism is also applicable for $μ_B\ne0$, here we present it for the simpler case of a finite isospin chemical potential $μ_I$ for which there is no Sign Problem. We present and compare results for the pressure and the isospin density obtained using Taylor expansion, exponential resummation and cumulant expansion, and provide evidence that the absence of bias in the latter actually improves the convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源