论文标题

通过增强学习在分配系统中进行电力负载预测的最佳自适应预测间隔

Optimal Adaptive Prediction Intervals for Electricity Load Forecasting in Distribution Systems via Reinforcement Learning

论文作者

Zhang, Yufan, Wen, Honglin, Wu, Qiuwei, Ai, Qian

论文摘要

预测间隔提供了一种有效的工具,可以量化分销系统中负载的不确定性。传统的中央PI不能很好地适应偏斜的分布,其离线训练时尚很容易受到未来负载模式的不可预见的变化。因此,我们提出了一种最佳的PI估计方法,该方法通过自适应确定分位数的对称或不对称概率比例对来适应不同的数据分布。它依赖于加强学习的在线学习能力,以整合两个在线任务,即概率比例对和分数预测的自适应选择,这两者都是由神经网络建模的。因此,分位数PI的质量可以指导最佳概率比例对的选择过程,该过程形成了一个闭环以提高PI的质量。此外,为了提高分位数预测的学习效率,为在线分数回归过程提出了优先的经验重播策略。关于负载和净负荷的案例研究表明,与在线中央PIS方法相比,所提出的方法可以更好地适应数据分布。与离线训练的方法相比,它以更好的质量获得PI,并且在概念漂移方面更强大。

Prediction intervals offer an effective tool for quantifying the uncertainty of loads in distribution systems. The traditional central PIs cannot adapt well to skewed distributions, and their offline training fashion is vulnerable to unforeseen changes in future load patterns. Therefore, we propose an optimal PI estimation approach, which is online and adaptive to different data distributions by adaptively determining symmetric or asymmetric probability proportion pairs for quantiles. It relies on the online learning ability of reinforcement learning to integrate the two online tasks, i.e., the adaptive selection of probability proportion pairs and quantile predictions, both of which are modeled by neural networks. As such, the quality of quantiles-formed PI can guide the selection process of optimal probability proportion pairs, which forms a closed loop to improve the quality of PIs. Furthermore, to improve the learning efficiency of quantile forecasts, a prioritized experience replay strategy is proposed for online quantile regression processes. Case studies on both load and net load demonstrate that the proposed method can better adapt to data distribution compared with online central PIs method. Compared with offline-trained methods, it obtains PIs with better quality and is more robust against concept drift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源