论文标题
大规模多阶段随机编程问题的价值功能梯度学习
Value Function Gradient Learning for Large-Scale Multistage Stochastic Programming Problems
论文作者
论文摘要
为大规模的多阶段随机凸程序提出了一种称为值函数梯度学习(VFGL)的阶段分解算法。 VFGL找到最适合给定参数家族中值函数梯度的参数值。用于多阶段随机编程的广泛使用的分解算法,例如随机双动力学编程(SDDP),通过在每次迭代处添加线性亚速度削减来近似值函数。尽管这种方法在线性问题方面取得了成功,但随着迭代的进行,非线性问题可能会遭受每个子问题的增加。另一方面,VFGL具有固定数量的参数。因此,在整个迭代过程中,子问题的大小保持恒定。此外,VFGL可以通过随机梯度下降来学习参数,这意味着它可以很容易平行,并且不需要场景树的基础不确定性的近似。将VFGL与三个说明性示例的多阶段随机编程问题和SDDP方法的确定性等效表述进行了比较:生产计划,水热生成和终身财务计划问题。数值示例表明,VFGL会生成高质量的解决方案,并且在计算上是有效的。
A stagewise decomposition algorithm called value function gradient learning (VFGL) is proposed for large-scale multistage stochastic convex programs. VFGL finds the parameter values that best fit the gradient of the value function within a given parametric family. Widely used decomposition algorithms for multistage stochastic programming, such as stochastic dual dynamic programming (SDDP), approximate the value function by adding linear subgradient cuts at each iteration. Although this approach has been successful for linear problems, nonlinear problems may suffer from the increasing size of each subproblem as the iteration proceeds. On the other hand, VFGL has a fixed number of parameters; thus, the size of the subproblems remains constant throughout the iteration. Furthermore, VFGL can learn the parameters by means of stochastic gradient descent, which means that it can be easily parallelized and does not require a scenario tree approximation of the underlying uncertainties. VFGL was compared with a deterministic equivalent formulation of the multistage stochastic programming problem and SDDP approaches for three illustrative examples: production planning, hydrothermal generation, and the lifetime financial planning problem. Numerical examples show that VFGL generates high-quality solutions and is computationally efficient.