论文标题
使用HEBBIAN学习的CBIR的深度功能与稀缺数据
Deep Features for CBIR with Scarce Data using Hebbian Learning
论文作者
论文摘要
在基于内容的图像检索(CBIR)的背景下,从深神经网络(DNN)中提取的功能非常有效。在最近的工作中,受生物学启发的\ textit {hebbian}学习算法表明了DNN培训的承诺。在这一贡献中,我们研究了此类算法在为CBIR任务开发的特征提取器开发中的性能。具体而言,我们考虑了两个步骤的半监督学习策略:首先,使用图像数据集中的Hebbian学习进行了无监督的预训练阶段;其次,使用监督的随机梯度下降(SGD)训练进行微调。对于无监督的预训练阶段,我们探讨了非线性HEBBIAN主成分分析(HPCA)学习规则。对于监督的微调阶段,我们假设样品效率方案,其中标记的样品数量只是整个数据集的一小部分。我们在CIFAR10和CIFAR100数据集上进行的实验分析表明,当很少有标记的样品可用时,与各种替代方法相比,HEBBIAN方法可提供相关的改进。
Features extracted from Deep Neural Networks (DNNs) have proven to be very effective in the context of Content Based Image Retrieval (CBIR). In recent work, biologically inspired \textit{Hebbian} learning algorithms have shown promises for DNN training. In this contribution, we study the performance of such algorithms in the development of feature extractors for CBIR tasks. Specifically, we consider a semi-supervised learning strategy in two steps: first, an unsupervised pre-training stage is performed using Hebbian learning on the image dataset; second, the network is fine-tuned using supervised Stochastic Gradient Descent (SGD) training. For the unsupervised pre-training stage, we explore the nonlinear Hebbian Principal Component Analysis (HPCA) learning rule. For the supervised fine-tuning stage, we assume sample efficiency scenarios, in which the amount of labeled samples is just a small fraction of the whole dataset. Our experimental analysis, conducted on the CIFAR10 and CIFAR100 datasets shows that, when few labeled samples are available, our Hebbian approach provides relevant improvements compared to various alternative methods.