论文标题

从不完整的信息中推断非平衡系统:线性系统及其陷阱的情况

Inference in non-equilibrium systems from incomplete information: the case of linear systems and its pitfalls

论文作者

Lucente, Dario, Baldassarri, Andrea, Puglisi, Andrea, Vulpiani, Angelo, Viale, Massimiliano

论文摘要

来自实验和理论论点的数据是维持通过推理建模物理系统的工作的两个支柱。为了解决推论问题,数据应满足某些也取决于研究中特定问题的条件。在这里,我们关注与平衡距离的距离,通常是熵产生(时间反转不对称)或违反Kubo波动 - 散文关系的距离。我们展示了推断的一般,违反直觉和负面的推论,这是不可能使用具有高斯统计数据的一系列标量数据来估算与平衡距离的问题。当数据随着时间的推移相关性时,这种不可能也会发生,这是最有趣的情况,因为它通常源自多维线性马尔可夫系统,在该系统中,有许多与不同变量相关的时间尺度,可能是热浴。观察单个变量(或变量的线性组合)会导致一维过程,该过程与平衡始终无法区分(除非可用扰动反应实验)。在仅允许数据分析(不允许新实验)的环境中,我们建议(作为方法)合并使用具有不同参数的不同系列数据。当对实验参数和模型参数之间的连接有足够的了解时,此策略起作用。我们还简要地讨论了在某些粗粒剂方案中的马尔可夫链的背景下,如何出现这种结果。我们的结论是,与平衡的距离与对整个相空间的良好知识有关,因此在实际实验中通常很难近似。

Data from experiments and theoretical arguments are the two pillars sustaining the job of modelling physical systems through inference. In order to solve the inference problem, the data should satisfy certain conditions that depend also upon the particular questions addressed in a research. Here we focus on the characterization of systems in terms of a distance from equilibrium, typically the entropy production (time-reversal asymmetry) or the violation of the Kubo fluctuation-dissipation relation. We show how general, counter-intuitive and negative for inference, is the problem of the impossibility to estimate the distance from equilibrium using a series of scalar data which have a Gaussian statistics. This impossibility occurs also when the data are correlated in time, and that is the most interesting case because it usually stems from a multi-dimensional linear Markovian system where there are many time-scales associated to different variables and, possibly, thermal baths. Observing a single variable (or a linear combination of variables) results in a one-dimensional process which is always indistinguishable from an equilibrium one (unless a perturbation-response experiment is available). In a setting where only data analysis (and not new experiments) is allowed, we propose - as a way out - the combined use of different series of data acquired with different parameters. This strategy works when there is a sufficient knowledge of the connection between experimental parameters and model parameters. We also briefly discuss how such results emerge, similarly, in the context of Markov chains within certain coarse-graining schemes. Our conclusion is that the distance from equilibrium is related to quite a fine knowledge of the full phase space, and therefore typically hard to approximate in real experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源