论文标题

关于与Gromov-Wasserstein距离的分配问题

On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line

论文作者

Beinert, Robert, Heiss, Cosmas, Steidl, Gabriele

论文摘要

令$ x_1 <\ dots <x_n $和$ y_1 <\ dots <y_n $,$ n \ in \ mathbb n $,是实数。我们通过一个示例表明,分配问题$ \ max_ {σ\ in s_n}f_σ(x,y):= \ frac12 \ sum_ {i,k = 1}^n | x_i -x_i -x_k |^|^|^α\,|如果$ n> 2 +2^α$,则由相同的置换(ID)或反性置换(A-ID)求解。实际上,上述最大可以是,取决于点数,任意远离$ f_ \ text {id}(x,y)$和$ f_ \ text {a-id}(x,x,y)$。处理此类任务问题的动机来自它们与Gromov-Wasserstein Diverence的关系,这些分歧最近引起了很多关注。

Let $x_1 < \dots < x_n$ and $y_1 < \dots < y_n$, $n \in \mathbb N$, be real numbers. We show by an example that the assignment problem $$ \max_{σ\in S_n} F_σ(x,y) := \frac12 \sum_{i,k=1}^n |x_i - x_k|^α\, |y_{σ(i)} - y_{σ(k)}|^α, \quad α>0, $$ is in general neither solved by the identical permutation (id) nor the anti-identical permutation (a-id) if $n > 2 +2^α$. Indeed the above maximum can be, depending on the number of points, arbitrary far away from $F_\text{id}(x,y)$ and $F_\text{a-id}(x,y)$. The motivation to deal with such assignment problems came from their relation to Gromov-Wasserstein divergences which have recently attained a lot of attention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源