论文标题
$ d $ dimensionalschrödinger方程的分析解决方案,用于ECKART潜力,并在离心术语中改进了近似值
Analytical solution of $D$ dimensional Schrödinger equation for Eckart potential with a new improved approximation in centrifugal term
论文作者
论文摘要
提出了针对特征值的分析解决方案,{\ color {\ color {red} d维schrodinger方程在nikiforov-uvarov方法中具有eckart势}。这是通过Greene-Aldrich和Pekeris近似的组合使用新的,改进的离心项的近似值。解决方案是根据高几幅功能获得的。它促进了整个域中的准确表示。在任意$ \ ell \ neq 0 $ Quantum状态中说明了它的有效性。比较在不同维度中选择的一组潜在参数的结果。简而言之,在更高维度的量子力学中,提供了简单的精确近似值。
Analytical solutions are presented for eigenvalues, eigenfunctions of {\color{red} D-dimensional Schrodinger equation having Eckart potential} within Nikiforov-Uvarov method. This uses a new, improved approximation for centrifugal term, from a combination of Greene-Aldrich and Pekeris approximations. Solutions are obtained in terms of hypergeometric functions. It facilitates an accurate representation in entire domain. Its validity is illustrated for energies in an arbitrary $\ell \neq 0$ quantum state. Results are compared for a chosen set of potential parameters in different dimensions. In short, a simple accurate approximation is offered for Eckart and other potentials in quantum mechanics, in higher dimension.