论文标题

可解释的半监督学习的自动规则归纳

Automatic Rule Induction for Interpretable Semi-Supervised Learning

论文作者

Pryzant, Reid, Yang, Ziyi, Xu, Yichong, Zhu, Chenguang, Zeng, Michael

论文摘要

半监督的学习已经显示出允许NLP模型从少量标记数据中概括的希望。同时,经过预定的变压器模型充当了黑盒相关引擎,这些引擎很难解释,有时行为不可行。在本文中,我们建议通过自动规则诱导(ARI)解决这两个挑战,这是一个简单而通用的框架,用于自动发现并将符号规则集成到预验证的变压器模型中。首先,我们从低容量的机器学习模型中提取弱符号规则,这些模型接受了少量标记数据的训练。接下来,我们使用注意机制将这些规则整合到高容量的预测变压器模型中。最后,规则提出的系统成为自我培训框架的一部分,以提高对未标记数据的监督信号。这些步骤可以分层在各种现有的弱监督和半监督的NLP算法之下,以提高性能和解释性。跨九个序列分类和关系提取任务进行的实验表明,ARI可以在没有手动努力和最小的计算开销的情况下改善最新方法。

Semi-supervised learning has shown promise in allowing NLP models to generalize from small amounts of labeled data. Meanwhile, pretrained transformer models act as black-box correlation engines that are difficult to explain and sometimes behave unreliably. In this paper, we propose tackling both of these challenges via Automatic Rule Induction (ARI), a simple and general-purpose framework for the automatic discovery and integration of symbolic rules into pretrained transformer models. First, we extract weak symbolic rules from low-capacity machine learning models trained on small amounts of labeled data. Next, we use an attention mechanism to integrate these rules into high-capacity pretrained transformer models. Last, the rule-augmented system becomes part of a self-training framework to boost supervision signal on unlabeled data. These steps can be layered beneath a variety of existing weak supervision and semi-supervised NLP algorithms in order to improve performance and interpretability. Experiments across nine sequence classification and relation extraction tasks suggest that ARI can improve state-of-the-art methods with no manual effort and minimal computational overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源