论文标题

使用尖峰火车学习的关系表示

Relational representation learning with spike trains

论文作者

Dold, Dominik

论文摘要

关系表示学习最近因其在建模各种系统(例如,材料,材料和工业项目)的灵活性而获得了兴趣,例如航天器的设计。处理关系数据的突出方法是知识图嵌入算法,其中知识图的实体和关系映射到低维矢量空间,同时保留其语义结构。最近,已经提出了一种图形嵌入方法,该方法将图形元素映射到尖峰神经网络的时间域。但是,它依赖于仅通过一次峰值的神经元种群编码图元素。在这里,我们提出了一个模型,该模型使我们能够学习基于尖峰的知识图的嵌入,通过充分利用尖峰模式的时间域,每个图元素只需要一个神经元。只要可以计算出相对于峰值时间的梯度,我们就可以使用任意尖峰神经元模型来实现此编码方案,我们为集成和传火神经元模型证明这一点。通常,提出的结果表明,如何将关系知识集成到基于SPIKE的系统中,开辟了合并基于事件的计算和关系数据以构建强大而节能的人工智能应用程序和推理系统的可能性。

Relational representation learning has lately received an increase in interest due to its flexibility in modeling a variety of systems like interacting particles, materials and industrial projects for, e.g., the design of spacecraft. A prominent method for dealing with relational data are knowledge graph embedding algorithms, where entities and relations of a knowledge graph are mapped to a low-dimensional vector space while preserving its semantic structure. Recently, a graph embedding method has been proposed that maps graph elements to the temporal domain of spiking neural networks. However, it relies on encoding graph elements through populations of neurons that only spike once. Here, we present a model that allows us to learn spike train-based embeddings of knowledge graphs, requiring only one neuron per graph element by fully utilizing the temporal domain of spike patterns. This coding scheme can be implemented with arbitrary spiking neuron models as long as gradients with respect to spike times can be calculated, which we demonstrate for the integrate-and-fire neuron model. In general, the presented results show how relational knowledge can be integrated into spike-based systems, opening up the possibility of merging event-based computing and relational data to build powerful and energy efficient artificial intelligence applications and reasoning systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源