论文标题
使用机器学习来识别M87的地面光度调查中的玛格拉术球体群集候选
Using Machine Learning to Identify Extragalactic Globular Cluster Candidates from Ground-Based Photometric Surveys of M87
论文作者
论文摘要
球形簇(GC)一直是许多长期存在的天文学子场的核心,因此,外部星系中GC的系统鉴定具有巨大的影响。在这项研究中,我们利用M87良好的GC系统来实施监督的机器学习(ML)分类算法 - 特别是随机森林和神经网络 - 从前景恒星和背景星系中使用来自加拿大 - 法兰西 - 弗朗西 - 弗朗西 - 弗朗西·赫瓦伊 - hawai'i theScope(CFHT)的基于地面的光度计来识别GC。我们将这两种ML分类方法与“人类选择” GC的研究进行了比较,发现最佳性能随机森林模型可以重新选择61.2%$ \ pm $ 8.0%的GC从HST数据(ACSVC)中选择的GC $ 8.0%,并且表现最佳的神经网络模型分别是95.0%$ \ pm $ 3.4%。与从CFHT数据中选择的人类分类的GC和污染物相比,与我们的培训数据无关 - 表现最佳的随机森林模型可以正确地对91.0%$ \ pm $ 1.2%进行分类,并且表现最佳的神经网络模型可以正确分类为57.3%$ \ $ \ pm $ $ 1.1%。随着Vera C. Rubin天文台为第一光准备,天文学的ML方法一直引起人们的兴趣。这项研究中的观察值选择直接与早期的鲁宾天文台数据相媲美,并且在即将到来的数据集中运行ML算法的前景可产生令人鼓舞的结果。
Globular clusters (GCs) have been at the heart of many longstanding questions in many sub-fields of astronomy and, as such, systematic identification of GCs in external galaxies has immense impacts. In this study, we take advantage of M87's well-studied GC system to implement supervised machine learning (ML) classification algorithms - specifically random forest and neural networks - to identify GCs from foreground stars and background galaxies using ground-based photometry from the Canada-France-Hawai'i Telescope (CFHT). We compare these two ML classification methods to studies of "human-selected" GCs and find that the best performing random forest model can reselect 61.2% $\pm$ 8.0% of GCs selected from HST data (ACSVCS) and the best performing neural network model reselects 95.0% $\pm$ 3.4%. When compared to human-classified GCs and contaminants selected from CFHT data - independent of our training data - the best performing random forest model can correctly classify 91.0% $\pm$ 1.2% and the best performing neural network model can correctly classify 57.3% $\pm$ 1.1%. ML methods in astronomy have been receiving much interest as Vera C. Rubin Observatory prepares for first light. The observables in this study are selected to be directly comparable to early Rubin Observatory data and the prospects for running ML algorithms on the upcoming dataset yields promising results.