论文标题
四维标量 - 高斯河网理论中的非线性带电的平面黑洞
Non-linear charged planar black holes in four-dimensional Scalar-Gauss-Bonnet theories
论文作者
论文摘要
在这项工作中,我们考虑了最近提出的明确定义明确的理论,该理论允许爱因斯坦 - 加斯 - 邦纳特组合的健康$ d \至4 $限制,该组合需要增加标量的自由度。通过考虑通过Plebański张量和精确的结构函数$ \ Mathcal {H}(p)$,我们在存在物质源的情况下,在存在物质源的情况下继续构建精确的,毛茸茸的黑洞解决方案。使用WALD形式主义计算热力学数量,我们确定了参数空间中的一个区域,尽管平面ADS采用了放松的渐近方法,但毛茸茸的黑洞仍具有明确的,不易碎的,有限的热力学数量。我们在热和电波动下测试了其局部稳定性,我们还表明,这些黑洞配置满足了Smarr关系。
In this work, we consider the recently proposed well-defined theory that permits a healthy $D\to 4$ limit of the Einstein-Gauss-Bonnet combination, which requires the addition of a scalar degree of freedom. We continue the construction of exact, hairy black hole solutions in this theory in the presence of matter sources, by considering a nonlinear electrodynamics source, constructed through the Plebański tensor and a precise structural function $\mathcal{H}(P)$. Computing the thermodynamic quantities with the Wald formalism, we identify a region in parameter space where the hairy black holes posses well-defined, non-vanishing, finite thermodynamic quantities, in spite of the relaxed asymptotic approach to planar AdS. We test its local stability under thermal and electrical fluctuations and we also show that a Smarr relation is satisfied for these black hole configurations.