论文标题

利用中红外光谱成像和深度学习卵巢癌的组织亚型分类

Leveraging mid-infrared spectroscopic imaging and deep learning for tissue subtype classification in ovarian cancer

论文作者

Gajjela, Chalapathi Charan, Brun, Matthew, Mankar, Rupali, Corvigno, Sara, Kennedy, Noah, Zhong, Yanping, Liu, Jinsong, Sood, Anil K., Mayerich, David, Berisha, Sebastian, Reddy, Rohith

论文摘要

中红外光谱成像(MIRSI)是一类新兴的无标签技术用于数字组织病理学。卵巢癌的现代组织病理学鉴定涉及组织染色,然后进行形态学识别。这个过程耗时,主观,需要广泛的专业知识。本文使用新的MIRSI技术介绍了对卵巢组织亚型的第一个无标签,定量和自动的组织学识别。该技术称为光热红外(O-PTIR)成像,相对于先前的仪器提供了10倍的空间分辨率。它可以在生化重要的指纹波长下对组织的细胞亚细胞光谱研究。我们证明,亚细胞特征的分辨率增强,结合了光谱信息,可以使卵巢细胞亚型的可靠分类达到0.98的分类精度。此外,我们从74个患者样本中介绍了超过6000万个数据点的统计稳定验证。我们表明,来自五个波数的亚细胞分辨率足以超过最先进的衍射限制技术,最高可达235个波数。我们还根据在早期癌症诊断中表现出功效的上皮和基质的相对量,提出了两个定量生物标志物。本文表明,将深度学习与内在的生化miRSI测量结合起来,可以对癌组织进行定量评估,从而提高组织病理学的严格性和可重复性。

Mid-infrared spectroscopic imaging (MIRSI) is an emerging class of label-free techniques being leveraged for digital histopathology. Modern histopathologic identification of ovarian cancer involves tissue staining followed by morphological pattern recognition. This process is time-consuming, subjective, and requires extensive expertise. This paper presents the first label-free, quantitative, and automated histological recognition of ovarian tissue subtypes using a new MIRSI technique. This technique, called optical photothermal infrared (O-PTIR) imaging, provides a 10X enhancement in spatial resolution relative to prior instruments. It enables sub-cellular spectroscopic investigation of tissue at biochemically important fingerprint wavelengths. We demonstrate that enhanced resolution of sub-cellular features, combined with spectroscopic information, enables reliable classification of ovarian cell subtypes achieving a classification accuracy of 0.98. Moreover, we present statistically robust validation from 74 patient samples with over 60 million data points. We show that sub-cellular resolution from five wavenumbers is sufficient to outperform state-of-the-art diffraction-limited techniques from up to 235 wavenumbers. We also propose two quantitative biomarkers based on the relative quantities of epithelium and stroma that exhibits efficacy in early cancer diagnosis. This paper demonstrates that combining deep learning with intrinsic biochemical MIRSI measurements enables quantitative evaluation of cancerous tissue, improving the rigor and reproducibility of histopathology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源