论文标题
无线联合学习的联合设备选择和电源控制
Joint Device Selection and Power Control for Wireless Federated Learning
论文作者
论文摘要
本文研究了无线联合学习(FL)的联合设备选择和电源控制方案,考虑了参数服务器(PS)和终端设备之间的下行链路和上行链路通信。在每一轮模型培训中,PS首先以模拟方式将全局模型广播到终端设备,然后终端设备通过空中计算(AIRCOMP)执行本地培训并将更新的模型参数上传到PS。首先,我们为局部更新模型的聚合提出了一个基于AIRCOMP的自适应重新呼能方案,其中模型聚合权重由所选设备的上行链路传输功率值直接确定,并仅通过设备选择和功率控制才能简单地实现关节学习和通信优化。此外,我们为提出的无线FL算法提供了收敛分析,并在预期的和最佳的全局损失值之间的预期最优差距上的上限得出了上限。借助瞬时通道状态信息(CSI),我们分别在个人和总和上行链路传输功率约束下制定了最佳差距最小化问题,这些问题被证明是通过半决赛编程(SDR)技术来解决的。数值结果表明,我们提出的无线FL算法通过使用理想的FedAvg方案与无错误的模型交换和完整的设备参与来接近最佳性能。
This paper studies the joint device selection and power control scheme for wireless federated learning (FL), considering both the downlink and uplink communications between the parameter server (PS) and the terminal devices. In each round of model training, the PS first broadcasts the global model to the terminal devices in an analog fashion, and then the terminal devices perform local training and upload the updated model parameters to the PS via over-the-air computation (AirComp). First, we propose an AirComp-based adaptive reweighing scheme for the aggregation of local updated models, where the model aggregation weights are directly determined by the uplink transmit power values of the selected devices and which enables the joint learning and communication optimization simply by the device selection and power control. Furthermore, we provide a convergence analysis for the proposed wireless FL algorithm and the upper bound on the expected optimality gap between the expected and optimal global loss values is derived. With instantaneous channel state information (CSI), we formulate the optimality gap minimization problems under both the individual and sum uplink transmit power constraints, respectively, which are shown to be solved by the semidefinite programming (SDR) technique. Numerical results reveal that our proposed wireless FL algorithm achieves close to the best performance by using the ideal FedAvg scheme with error-free model exchange and full device participation.