论文标题

MIP-NERF RGB-D:深度辅助快速神经辐射场

Mip-NeRF RGB-D: Depth Assisted Fast Neural Radiance Fields

论文作者

Dey, Arnab, Ahmine, Yassine, Comport, Andrew I.

论文摘要

神经场景表示,例如神经辐射场(NERF),基于训练多层感知器(MLP),使用一组具有已知姿势的彩色图像。现在,越来越多的设备产生RGB-D(颜色 +深度)信息,这对于各种任务非常重要。因此,本文的目的是通过将深度信息与颜色图像结合在一起来研究这些有希望的隐式表示可以进行哪些改进。特别是,最近建议的MIP-NERF方法使用圆锥形的粉丝而不是射线进行音量渲染,它使人们可以考虑与距摄像头中心距离的像素的不同区域。提出的方法还模拟了深度不确定性。这允许解决基于NERF的方法的主要局限性,包括提高几何学的准确性,减少的伪像,更快的训练时间和缩短预测时间。实验是在众所周知的基准场景上进行的,并且比较在场景几何形状和光度重建中的准确性提高,同时将训练时间减少了3-5次。

Neural scene representations, such as Neural Radiance Fields (NeRF), are based on training a multilayer perceptron (MLP) using a set of color images with known poses. An increasing number of devices now produce RGB-D(color + depth) information, which has been shown to be very important for a wide range of tasks. Therefore, the aim of this paper is to investigate what improvements can be made to these promising implicit representations by incorporating depth information with the color images. In particular, the recently proposed Mip-NeRF approach, which uses conical frustums instead of rays for volume rendering, allows one to account for the varying area of a pixel with distance from the camera center. The proposed method additionally models depth uncertainty. This allows to address major limitations of NeRF-based approaches including improving the accuracy of geometry, reduced artifacts, faster training time, and shortened prediction time. Experiments are performed on well-known benchmark scenes, and comparisons show improved accuracy in scene geometry and photometric reconstruction, while reducing the training time by 3 - 5 times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源