论文标题
在gan-gross-prasad的猜想及其对$ \ left的改进(\ mathrm {u} \ left(2n \ right),\ mathrm {u} \ left(1 \ right)\ right)$
On the Gan-Gross-Prasad conjecture and its refinement for $\left(\mathrm{U}\left(2n\right),\mathrm{U}\left(1\right)\right)$
论文作者
论文摘要
我们证明了$ \ left(\ mathrm {u} \ left(2n \ right),\ mathrm {u} \ left(1 \ right)\ right)$的gan-gross-pros-prosad custivure(\ mathrm {u} \ left(2n \ right),一般而言,并证明了它的精制,并证明了iChino-iChino-iChino-iChino-iChino-iChino-ikeDa型explicit offient $ -VASS $ -vutt in Central $ -vptuse for tement $ -vall-l-value,同样,我们还证明了它的拆分模拟,即Gan-gross-prasad的猜想及其对$ \ left的改进(\ mathrm {gl} _ {2n},\ m mathrm {gl} _1 _1 \ right)$一般而言。
We prove the Gan-Gross-Prasad conjecture for $\left(\mathrm{U}\left(2n\right),\mathrm{U}\left(1\right)\right)$ in general and prove its refinement, namely the Ichino-Ikeda type explicit formula for the central $L$-values, under certain assumptions. Similarly, we also prove its split analogue, namely the Gan-Gross-Prasad conjecture and its refinement for $\left(\mathrm{GL}_{2n}, \mathrm{GL}_1\right) $ in general.