论文标题

基于神经网络的推荐系统的统一协作表示学习

A Unified Collaborative Representation Learning for Neural-Network based Recommender Systems

论文作者

Xu, Yuanbo, Wang, En, Yang, Yongjian, Chang, Yi

论文摘要

大多数NN-RS通过从直接的用户项目交互(例如用户项目评级矩阵)构建表示形式来关注准确性,同时忽略用户和项目之间的基本相关性(例如,对同一项目的相同评分对相同评级进行评分的用户应嵌入相似的表示形式中),这是一种意识形态的障碍。另一方面,ME模型直接采用内部产品作为默认损耗函数度量标准,该指标无法将用户和项目投影到适当的潜在空间,这是方法论上的劣势。在本文中,我们提出了一个有监督的协作表示学习模型 - 磁度量学习(MML) - 将用户和项目映射到统一的潜在矢量空间中,从而增强了NN -RSS的表示形式学习。首先,MML利用双重三胞胎不仅建模用户和项目之间观察到的关系,还对用户之间的基本关系以及项目来克服意识形态的劣势。具体而言,在MML中提出了基于度量的双重损失函数,以收集相似的实体并分散不同的实体。使用MML,我们可以根据加权度量标准来轻松比较所有关系(用户与用户,项目,用户与项目),从而克服了方法论劣势。我们在具有大型物品空间的四个现实世界数据集上进行了广泛的实验。结果表明,MML可以从用户项目矩阵中学习适当的统一潜在空间,具有高精度和有效性,并导致对最先进的RS模型的性能增长平均17%。

Most NN-RSs focus on accuracy by building representations from the direct user-item interactions (e.g., user-item rating matrix), while ignoring the underlying relatedness between users and items (e.g., users who rate the same ratings for the same items should be embedded into similar representations), which is an ideological disadvantage. On the other hand, ME models directly employ inner products as a default loss function metric that cannot project users and items into a proper latent space, which is a methodological disadvantage. In this paper, we propose a supervised collaborative representation learning model - Magnetic Metric Learning (MML) - to map users and items into a unified latent vector space, enhancing the representation learning for NN-RSs. Firstly, MML utilizes dual triplets to model not only the observed relationships between users and items, but also the underlying relationships between users as well as items to overcome the ideological disadvantage. Specifically, a modified metric-based dual loss function is proposed in MML to gather similar entities and disperse the dissimilar ones. With MML, we can easily compare all the relationships (user to user, item to item, user to item) according to the weighted metric, which overcomes the methodological disadvantage. We conduct extensive experiments on four real-world datasets with large item space. The results demonstrate that MML can learn a proper unified latent space for representations from the user-item matrix with high accuracy and effectiveness, and lead to a performance gain over the state-of-the-art RS models by an average of 17%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源