论文标题
非局部抛物线寄生虫$ p $ laplace方程的本地Hölder规律性
Local Hölder regularity for nonlocal parabolic $p$-Laplace equations
论文作者
论文摘要
我们证明了表格\ begin {align*}的非局部抛物线方程的本地Hölder规律性 \ partial_t u + \ text { $ p \ in(1,\ infty)$和$ s \ in(0,1)$。
We prove local Hölder regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for $p\in (1,\infty)$ and $s \in (0,1)$.