论文标题
penrose型不平等,具有三孔拓扑的黑洞的角动量
A Penrose-type inequality with angular momenta for black holes with 3-sphere horizon topology
论文作者
论文摘要
我们建立了一个具有角动量的Penrose型不等式,用于四个维,双轴对称,最大,渐近平坦的初始数据集$(M,G,K)$(M,G,K)$,用于具有固定的角度矩和地平线内边界的爱因斯坦方程,与三个球的最小最小的最小表面相关。此外,当且仅当初始数据集与固定的Myers-Perry黑洞的规范时间切片等均衡时,相等性。
We establish a Penrose-type inequality with angular momenta for four dimensional, biaxially symmetric, maximal, asymptotically flat initial data sets $(M,g,k)$ for the Einstein equations with fixed angular momenta and horizon inner boundary associated to a 3-sphere outermost minimal surface. Moreover, equality holds if and only if the initial data set is isometric to a canonical time slice of a stationary Myers-Perry black hole.