论文标题

通过不对称诱导的顺序出现的微生物振荡器

Emergent Microrobotic Oscillators via Asymmetry-Induced Order

论文作者

Yang, Jing Fan, Berrueta, Thomas A., Brooks, Allan M., Liu, Albert Tianxiang, Zhang, Ge, Gonzalez-Medrano, David, Yang, Sungyun, Koman, Volodymyr B., Chvykov, Pavel, LeMar, Lexy N., Miskin, Marc Z., Murphey, Todd D., Strano, Michael S.

论文摘要

在几个赫兹的顺序上自发的低频振荡是自然界许多关键过程的驱动因素。从细菌游泳到哺乳动物步态,将静态能量输入转化为缓慢振荡的电和机械能力是跨尺度的生物自治的关键。然而,在微米尺度上制造缓慢的人造振荡器仍然是发展全自动微型机器人的主要障碍。在这里,我们报告了从过氧化物滴的空气界面上相互作用的简单的活性微粒集合的低频松弛振荡器的出现。它们的集体振荡形成了化学力学和电化学极限循环,使环境化学能将其转导向周期性的机械运动和板载电流。令人惊讶的是,即使引入了更多的粒子,集体也可以稳健地振荡,但是只有当我们添加具有修改的反应性的单个粒子以故意破坏系统的置换对称性时。我们通过一种新的热力学机制来解释这种紧急秩序,以造成不对称诱导的顺序。从稳定系统振荡中收获的能量可以使用机上电子组件,我们通过周期性和同步驱动微生物臂来证明这一点。这项工作突出了一种新的策略,用于在微观尺度上实现低频振荡,否则很难在自然系统之外观察到,这为将来的微生物自治铺平了道路。

Spontaneous low-frequency oscillations on the order of several hertz are the drivers of many crucial processes in nature. From bacterial swimming to mammal gaits, the conversion of static energy inputs into slowly oscillating electrical and mechanical power is key to the autonomy of organisms across scales. However, the fabrication of slow artificial oscillators at micrometre scales remains a major roadblock towards the development of fully-autonomous microrobots. Here, we report the emergence of a low-frequency relaxation oscillator from a simple collective of active microparticles interacting at the air-liquid interface of a peroxide drop. Their collective oscillations form chemomechanical and electrochemical limit cycles that enable the transduction of ambient chemical energy into periodic mechanical motion and on-board electrical currents. Surprisingly, the collective can oscillate robustly even as more particles are introduced, but only when we add a single particle with modified reactivity to intentionally break the system's permutation symmetry. We explain such emergent order through a novel thermodynamic mechanism for asymmetry-induced order. The energy harvested from the stabilized system oscillations enables the use of on-board electronic components, which we demonstrate by cyclically and synchronously driving microrobotic arms. This work highlights a new strategy for achieving low-frequency oscillations at the microscale that are otherwise difficult to observe outside of natural systems, paving the way for future microrobotic autonomy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源