论文标题

网络拥堵游戏中的公共信号

Public Signals in Network Congestion Games

论文作者

Griesbach, Svenja M., Hoefer, Martin, Klimm, Max, Koglin, Tim

论文摘要

我们认为,在很大程度上尚未开发的潜力可以改善源于旅行时间固有的不确定性的交通网络。旅行时间可能会受到各种参数,例如天气状况,道路工程或交通事故的随机不确定性。大型移动性服务比单网络用户具有信息优势,因为他们能够从数据中学习流量条件。仁慈的移动服务可以利用这种信息优势,以将交通均衡转向一个有利的方向。最终的优化问题是通常称为信号传导或贝叶斯说服的任务。先前的工作表明,即使对于具有随机偏移的仿射成本函数,基本的信号问题也可能是NP近似值的NP。相比之下,我们表明在这种情况下,许多网络很容易发出信号问题。我们严格地表征了单商品网络的类别,其中完整的信息启示始终是最佳的信号策略。此外,我们构建了从最佳信号传导到计算Wardrop平衡的最佳支持向量集合的减少。对于两个状态,该洞察力可用于计算最佳信号方案。每当由任何信号分布产生的不同支持的数量界定到输入大小中的多项式时,该算法就会在多项式时间内运行。使用单元格分解技术,我们将方法扩展到具有恒定商品数量的多商品平行链路网络的多项式时间算法,即使我们具有恒定数量的自然状态。

We consider a largely untapped potential for the improvement of traffic networks that is rooted in the inherent uncertainty of travel times. Travel times are subject to stochastic uncertainty resulting from various parameters such as weather condition, occurrences of road works, or traffic accidents. Large mobility services have an informational advantage over single network users as they are able to learn traffic conditions from data. A benevolent mobility service may use this informational advantage in order to steer the traffic equilibrium into a favorable direction. The resulting optimization problem is a task commonly referred to as signaling or Bayesian persuasion. Previous work has shown that the underlying signaling problem can be NP-hard to approximate within any non-trivial bounds, even for affine cost functions with stochastic offsets. In contrast, we show that in this case, the signaling problem is easy for many networks. We tightly characterize the class of single-commodity networks, in which full information revelation is always an optimal signaling strategy. Moreover, we construct a reduction from optimal signaling to computing an optimal collection of support vectors for the Wardrop equilibrium. For two states, this insight can be used to compute an optimal signaling scheme. The algorithm runs in polynomial time whenever the number of different supports resulting from any signal distribution is bounded to a polynomial in the input size. Using a cell decomposition technique, we extend the approach to a polynomial-time algorithm for multi-commodity parallel link networks with a constant number of commodities, even when we have a constant number of different states of nature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源