论文标题
要理解自然语言生成中性别享有性复合偏见
Towards Understanding Gender-Seniority Compound Bias in Natural Language Generation
论文作者
论文摘要
即使在同一工作头衔中,妇女通常也被认为是男性的大三。尽管在自然语言处理(NLP)评估性别偏见方面取得了重大进展,但现有研究很少研究与其他社会偏见复杂的性别群体偏见如何变化。在这项工作中,我们通过引入一个新颖的探测复合偏见的框架来研究资历如何影响预处理的神经产生模型中表现出的性别偏见程度。我们贡献了一个跨越两个领域的基准稳健测试数据集,分别是使用遥远的诉讼方法创建的美国参议员和教授职位。我们的数据集包括带有基本地面真理和配对的反事实的人写的文本。然后,我们检查GPT-2的困惑和生成文本中性别语言的频率。我们的结果表明,GPT-2通过将女性视为初中,而男性比两个领域的地面真相更频繁地放大了偏见。这些结果表明,使用GPT-2构建的NLP应用可能会损害专业能力的女性。
Women are often perceived as junior to their male counterparts, even within the same job titles. While there has been significant progress in the evaluation of gender bias in natural language processing (NLP), existing studies seldom investigate how biases toward gender groups change when compounded with other societal biases. In this work, we investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models by introducing a novel framework for probing compound bias. We contribute a benchmark robustness-testing dataset spanning two domains, U.S. senatorship and professorship, created using a distant-supervision method. Our dataset includes human-written text with underlying ground truth and paired counterfactuals. We then examine GPT-2 perplexity and the frequency of gendered language in generated text. Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains. These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.