论文标题

非ArchimedeanFréchet代数和超曲面补充的环空间

Non-Archimedean Fréchet Algebras and the Loop Space of a Hypersurface Complement

论文作者

Bouaziz, Emile

论文摘要

我们将循环的空间研究成高度的补体,并表明laurent系列的相应拓扑代数为$ \ nathcal {o}(l \ mathbf {a}^a}^{d} _ {f} _ {f})$是$ \ nathcal的拓扑定位。这需要引入少量的非Archimedean功能分析。特别是,我们与拓扑代数合作,其拓扑是由一个非族裔,非架构的半norms的家族产生的。

We study the space of loops into a hypersurface complement, and show that the corresponding topological algebra of Laurent series with coefficients in $\mathcal{O}(L\mathbf{A}^{d}_{f})$ is a topological localisation of $\mathcal{O}(L\mathbf{A}^{d})$. This requires introducing a small amount of non-Archimedean functional analysis. In particular we work with topological algebras whose topology is generated by a family of sub-multiplicative, non-Archimedean semi-norms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源