论文标题

通过学习细粒度的本地样式,几乎没有字体生成

Few-Shot Font Generation by Learning Fine-Grained Local Styles

论文作者

Tang, Licheng, Cai, Yiyang, Liu, Jiaming, Hong, Zhibin, Gong, Mingming, Fan, Minhu, Han, Junyu, Liu, Jingtuo, Ding, Errui, Wang, Jingdong

论文摘要

旨在生成新字体的几个示例字体(FFG),由于劳动力成本的显着降低,它引起了人们的关注。典型的FFG管道将标准字体库中的字符视为内容字形,并通过从参考字形中提取样式信息将其转移到新的目标字体中。大多数现有的解决方案在全球或组件上明确删除了内容和参考字形的样式。但是,字形的风格主要在于当地细节,即自由基,组成部分和笔触的风格一起描绘了字形的样式。因此,即使是单个字符也可以包含在空间位置上分布的不同样式。在本文中,我们通过学习提出了一种新的字体生成方法1)参考文献中的细粒度局部样式,以及2)内容和参考字形之间的空间对应关系。因此,可以使用正确的细粒样式分配内容字形中的每个空间位置。为此,我们对内容字形的表示作为查询和参考字形表示作为钥匙和值的跨意见。交叉注意机制可以在参考文字中遵循正确的本地样式,而不是明确地删除全球或组件建模,而是将参考样式汇总为给定内容字形的精细粒度样式表示。实验表明,所提出的方法的表现优于FFG中最新方法。特别是,用户研究还证明了我们方法的样式一致性显着优于以前的方法。

Few-shot font generation (FFG), which aims to generate a new font with a few examples, is gaining increasing attention due to the significant reduction in labor cost. A typical FFG pipeline considers characters in a standard font library as content glyphs and transfers them to a new target font by extracting style information from the reference glyphs. Most existing solutions explicitly disentangle content and style of reference glyphs globally or component-wisely. However, the style of glyphs mainly lies in the local details, i.e. the styles of radicals, components, and strokes together depict the style of a glyph. Therefore, even a single character can contain different styles distributed over spatial locations. In this paper, we propose a new font generation approach by learning 1) the fine-grained local styles from references, and 2) the spatial correspondence between the content and reference glyphs. Therefore, each spatial location in the content glyph can be assigned with the right fine-grained style. To this end, we adopt cross-attention over the representation of the content glyphs as the queries and the representations of the reference glyphs as the keys and values. Instead of explicitly disentangling global or component-wise modeling, the cross-attention mechanism can attend to the right local styles in the reference glyphs and aggregate the reference styles into a fine-grained style representation for the given content glyphs. The experiments show that the proposed method outperforms the state-of-the-art methods in FFG. In particular, the user studies also demonstrate the style consistency of our approach significantly outperforms previous methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源