论文标题
限制定理和Strichartz的不平等现象,用于涉及正统函数的拉瓜操作员
Restriction theorems and Strichartz inequalities for the Laguerre operator involving orthonormal functions
论文作者
论文摘要
在本文中,我们证明了傅里叶 - 局部变换的限制定理,并为schrödinger传播器$ e^{ - itl_α} $建立strichartz估计值$l_α=-Δ-\ sum_ {j = 1}^{n}(\ dfrac {2α_j+1} {x_j} {x_j} \ dfrac {\ partial} {\ partial} {\ partial x_j}) $α=(α_1,α_2,\ cdots,α_n)\ in {( - \ frac {1} {2} {2},\ infty)^n} $ on $ \ mathbb {r} _+^n $涉及正常功能的系统。
In this paper, we prove restriction theorems for the Fourier-Laguerre transform and establish Strichartz estimates for the Schrödinger propagator $e^{-itL_α}$ for the Laguerre operator $L_α=-Δ-\sum_{j=1}^{n}(\dfrac{2α_j+1}{x_j}\dfrac{\partial}{\partial x_j})+\dfrac{|x|^2}{4}$, $α=(α_1,α_2,\cdots,α_n)\in{(-\frac{1}{2},\infty)^n}$ on $\mathbb{R}_+^n$ involving systems of orthonormal functions.