论文标题

经典和量子退火的退化工程:对撞机物理学中稀疏线性回归的案例研究

Degeneracy Engineering for Classical and Quantum Annealing: A Case Study of Sparse Linear Regression in Collider Physics

论文作者

Anschuetz, Eric R., Funcke, Lena, Komiske, Patrick T., Kryhin, Serhii, Thaler, Jesse

论文摘要

经典和量子退火是提出了解决广泛优化问题的计算范例。在本文中,我们旨在通过引入退化工程技术来提高退火算法的性能,通过该技术通过在目标汉密尔顿(Hamiltonian)中修改术语的子集,从而通过该技术来提高基态的相对退化。我们通过将其应用于稀疏线性回归的$ \ ell_0 $ norm正则化的示例来说明这种新颖的方法,这通常是NP-HARD优化问题。具体来说,我们展示了如何将$ \ ell_0 $ -norm正则化作为二次无约束的二进制优化(QUBO)问题,适用于在退火平台上实现。作为一个案例研究,我们将此QUBO公式应用于高能量对撞机物理学中的能量多项式,发现退化工程大大改善了退火性能。我们的结果激发了退化工程在各种正规化优化问题上的应用。

Classical and quantum annealing are computing paradigms that have been proposed to solve a wide range of optimization problems. In this paper, we aim to enhance the performance of annealing algorithms by introducing the technique of degeneracy engineering, through which the relative degeneracy of the ground state is increased by modifying a subset of terms in the objective Hamiltonian. We illustrate this novel approach by applying it to the example of $\ell_0$-norm regularization for sparse linear regression, which is in general an NP-hard optimization problem. Specifically, we show how to cast $\ell_0$-norm regularization as a quadratic unconstrained binary optimization (QUBO) problem, suitable for implementation on annealing platforms. As a case study, we apply this QUBO formulation to energy flow polynomials in high-energy collider physics, finding that degeneracy engineering substantially improves the annealing performance. Our results motivate the application of degeneracy engineering to a variety of regularized optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源