论文标题
晶格中的轨道
Orbits in Lattices
论文作者
论文摘要
我们展示了用于计算$ \ operatatorName {o}(l)$的某些子组的晶格$ l $中山雀的建筑物和轨道的算法。我们讨论如何应用这些算法来了解正交模块化变种的baily-borel压缩中边界组件的配置,并提高正交模块化形式的计算机算术的性能。
We exhibit algorithms for calculating Tits' buildings and orbits of vectors in a lattice $L$ for certain subgroups of $\operatorname{O}(L)$. We discuss how these algorithms can be applied to understand the configuration of boundary components in the Baily-Borel compactification of orthogonal modular varieties and to improve the performance of computer arithmetic of orthogonal modular forms.