论文标题
一个新的指标及其计划构建,用于不断发展2美元的阈值秘密共享计划
A New Metric and Its Scheme Construction for Evolving $2$-Threshold Secret Sharing Schemes
论文作者
论文摘要
不断发展的秘密共享计划不需要事先了解当事方$ n $和$ n $的人数。众所周知,不断发展的$ 2 $阈值秘密共享计划和整数的前缀编码具有一对一的信件。但是,尚不知道要更好地构建该方案的整数的前缀编码。在本文中,我们提出了一个新的度量$k_σ$,用于不断发展的$ 2 $ - 阈值秘密共享计划$σ$。我们证明,公制$k_σ\ geq 1.5 $并构建一个称为$λ$代码的整数的新前缀编码,以实现公制$k_λ= 1.59375 $。因此,证明最佳$(2,\ infty)$ - 阈值秘密共享方案的度量$k_σ$的范围为$ 1.5 \ leqk_σ\ leq1.59375 $。此外,还证明了股票量的可及股票总和的可及以$(2,n)$ - 阈值秘密共享方案的范围。
Evolving secret sharing schemes do not require prior knowledge of the number of parties $n$ and $n$ may be infinitely countable. It is known that the evolving $2$-threshold secret sharing scheme and prefix coding of integers have a one-to-one correspondence. However, it is not known what prefix coding of integers to use to construct the scheme better. In this paper, we propose a new metric $K_Σ$ for evolving $2$-threshold secret sharing schemes $Σ$. We prove that the metric $K_Σ\geq 1.5$ and construct a new prefix coding of integers, termed $λ$ code, to achieve the metric $K_Λ=1.59375$. Thus, it is proved that the range of the metric $K_Σ$ for the optimal $(2,\infty)$-threshold secret sharing scheme is $1.5\leq K_Σ\leq1.59375$. In addition, the reachable lower bound of the sum of share sizes for $(2,n)$-threshold secret sharing schemes is proved.