论文标题
$ 0 <p <1 $的$ l^p- $空间的概括的某些属性
Certain properties of Generalization of $L^p-$Spaces for $0 < p < 1$
论文作者
论文摘要
本文介绍了$ n^* - $函数的概念,并给出了$ l^p的概括,$ 0 <p <1 $ $l_φ$,其中$φ$是$ n^* - $函数。同样,本文研究了有关此通用空间及其线性形式的一些特性,包括一些类似物和其他知名空间的共同特征。除此之外,我们证明了这个空间是一个准主机空间,但不是规范的空间。
This paper introduces the notion of $N^*-$function and gives a generalization of $L^p,$ for $0<p<1$ denoted by $L_Φ$ where $Φ$ is an $N^*-$function. As well as, this paper examines some properties regarding to this generalized spaces and its linear forms, including some analogies and common features to some other well known spaces. As well as, we prove this space is a quasi-normed space but it is not normed space.