论文标题

概率结构化语法进化

Probabilistic Structured Grammatical Evolution

论文作者

Mégane, Jessica, Lourenço, Nuno, Machado, Penousal

论文摘要

基于语法的基因编程(GP)方法中使用的语法对产生的解决方案的质量产生了重大影响,因为它们通过限制解决方案的语法来定义搜索空间。在这项工作中,我们提出了概率结构化语法进化(PSGE),这是一种结合结构化语法进化(SGE)和概率语法进化(PGE)表示变体和映射机制的新方法。基因型是一组动态列表,一个用于语法中的每个非末端的列表,列表的每个元素代表用于选择下一个概率无上下文语法(PCFG)派生规则的概率。在所有六个基准问题上,PSGE统计上的语法演化(GE)优于语法演化(GE)。与PGE相比,PSGE的表现优于分析的6个问题中的4个。

The grammars used in grammar-based Genetic Programming (GP) methods have a significant impact on the quality of the solutions generated since they define the search space by restricting the solutions to its syntax. In this work, we propose Probabilistic Structured Grammatical Evolution (PSGE), a new approach that combines the Structured Grammatical Evolution (SGE) and Probabilistic Grammatical Evolution (PGE) representation variants and mapping mechanisms. The genotype is a set of dynamic lists, one for each non-terminal in the grammar, with each element of the list representing a probability used to select the next Probabilistic Context-Free Grammar (PCFG) derivation rule. PSGE statistically outperformed Grammatical Evolution (GE) on all six benchmark problems studied. In comparison to PGE, PSGE outperformed 4 of the 6 problems analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源