论文标题
确切的夫妻及其光谱序列
Exact couples and their spectral sequences
论文作者
论文摘要
给定一个戒指上有一个很大的精确模块,我们确定了$ e^{\ infty} $ - 其相关光谱序列的术语:让$ l^{\ ast} $和$ l _ {\ ast} $表示限制的限制和colimit插入夫妇的限制对象,由kernel和kernel和Image对象和图像对象和图像对象和图像对象进行过滤。然后,不稳定的e-Infinite扩展定理说明了colimit过滤的相邻过滤商如何通过$ e^{\ infty} $对象扩展,而不是核过滤的相应过滤商。 稳定的E-赋值扩展定理是基于以下事实:确切夫妇的派生过程承认了一个超越传统光谱序列透视图的范围的递归。递归递归总是在某些序数稳定。由此产生的稳定$ e $ -objects是(a)始终对$ e^{\ infty} $的子对象,并且(b)扩展了colimit过滤的相邻过滤商,而不是相应的相邻过滤商的核过滤{\ em}的相应相邻过滤商,需要lim-1正确的条款。 即使在频谱序列远非任何传统意义上,e-Infinity扩展定理也可以就过滤的极限/colimit基台得出结论。我们在通过形态学的“比较”频谱序列的背景下开发了这种结果,而这种序列是由潜在的确切夫妇的象征引起的。 我们还以光谱序列为“反向比较”做出了贡献。这是使用有关基础精确对的通用基台的信息来提取有关光谱序列的一个或多个页面的信息。这些结果与Zeeman的比较定理重叠。
Given a bigraded exact couple of modules over some ring, we determine the meaning of the $E^{\infty}$-terms of its associated spectral sequence: Let $L^{\ast}$ and $L_{\ast}$ denote the limit and colimit abutting objects of the exact couple, filtered by the kernel and image objects to the associated cone and cocone diagrams. Then the unstable E-infinite extension theorem states how adjacent filtration quotients of the colimit filtration are extended by $E^{\infty}$ objects over corresponding adjacent filtration quotients of the kernel filtration. The stable E-infinity extension theorem is based on the fact that the derivation process of the exact couple admits a transfinite recursion which is beyond the scope of the traditional spectral sequence perspective. The transfinite recursion always stabilizes at some ordinal. The resulting stable $E$-objects are (a) always subobjects of $E^{\infty}$ and (b) extend adjacent filtration quotients of the colimit filtration over corresponding adjacent filtration quotients of the kernel filtration {\em without} the need for lim-1 corrective terms. The E-infinity extension theorems enable conclusions about the filtered limit/colimit abutments even in cases where the spectral sequence is far from converging in any traditional sense. We develop such results in the context of 'comparing' the spectral sequences via the morphism that is induced by a morphism of underlying exact couples. We also contribute to 'reverse comparison' in a spectral sequence; that is using information about the universal abutment(s) of the underlying exact couple to extract information about one or more pages of the spectral sequence. These results overlap with Zeeman's comparison theorems in a generalizing fashion.